A note on Kuratowski's theorem on meagre sets.

March 19, 2024

This note was written based on a discussion among Wojciech Bielas, Andrzej Kucharski, Mateusz Kula and Szymon Plewik.

In [1] it was proven that if \mathcal{F} is a partition into meager sets of Čech complete space X of weight $\leq 2^{\omega}$, then there exists a family $\mathcal{A} \subseteq \mathcal{F}$ such that $\bigcup \mathcal{A}$ does not have the Baire property. Following their proof, we provide a slight generalization, see Theorem 1. Instead of Čech completeness we assume that X is Hausdorff and Choquet space; we replace weight by π weight.

If \mathcal{B} is a family of subsets of a space X, then

$$\mathcal{B}^{\omega} := \left\{ \bigcap_{n \in \omega} \bigcup \mathcal{S}_n \colon \mathcal{S}_n \subseteq \mathcal{B} \text{ and } |\mathcal{S}_n| < \omega \text{ for all } n \in \omega \right\}.$$

Lemma 1. Assume that X is a Hausdorff and Choquet space, \mathcal{B} is a π -base with $|\mathcal{B}| \leq 2^{-2^{\omega}}$, \mathcal{F} is a partition into meagre sets and $W \subseteq X$ is a G_{δ} subset that is not nowhere dense. If $\bigcup \mathcal{A}$ has the Baire property for all $\mathcal{A} \subseteq \mathcal{F}$, then there exists $V \subseteq W$, $V \in \mathcal{B}^{\omega}$ such that $|\{F \in \mathcal{F} \colon F \cap V \neq \emptyset\}| \geq 2^{\omega}$.

Proof. Take open sets H_n such that $W = \bigcap_{n \in \omega} H_n$. For each finite sequence $s \in 2^{<\omega}$ we will define a set $U_s \in \mathcal{B}$ such that $U_s \subseteq \operatorname{cl} W$ and a sequence $D_s = (D_s^k)_{k \in \omega}$ of nowhere dense sets. We proceed by induction. For $s = \emptyset$, since int $\operatorname{cl} W \neq \emptyset$, we can pick a set $U_s \in \mathcal{B}$ such that $U_s \subseteq \operatorname{cl} W$ and also put $D_s^k = \emptyset$ for all $k \in \omega$.

Fix $n \in \omega$ and assume that the sets U_s and sequences D_s are defined for all sequences s of length $\leq n$. Let s be a sequence of length n. We will define $U_{s \frown \varepsilon}$ and $D_{s \frown \varepsilon}$ for $\varepsilon \in \{0, 1\}$. The family

$$\mathcal{I}_s = \{ \mathcal{A} \subseteq \mathcal{F} \colon \bigcup \mathcal{A} \cap U_s \text{ is meagre} \}$$

is a sigma-ideal on \mathcal{F} containing all singletons. \mathcal{I}_s is not maximal, because otherwise there would exist a sigma-additive measure on \mathcal{F} and κ -additive measure on some $\kappa \leq |\mathcal{F}|$, but

$$\kappa \leqslant |\mathcal{F}| \leqslant |X| \leqslant 2^{2^{|\mathcal{B}|}} \leqslant 2^{\cdot \cdot \cdot 2^{\omega}},$$

which contradicts the fact that κ is strongly inaccessible. Hence there exist disjoint families \mathcal{A}_s^0 and \mathcal{A}_s^1 such that $\mathcal{A}_s^0 \cup \mathcal{A}_s^1 = \mathcal{F}$ and $\mathcal{A}_s^0, \mathcal{A}_s^1 \notin I_s$. Since $\bigcup \mathcal{A}_s^{\varepsilon}$ has the Baire property, there exist open sets $J_{s^{\frown}\varepsilon}$ and meagre sets $L_{s^{\frown}\varepsilon}$ such that

$$\bigcup \mathcal{A}_s^{\varepsilon} = J_{s \frown \varepsilon} \Delta L_{s \frown \varepsilon}$$

Take sequences $D_{s^{\frown}\varepsilon}$ of nowhere dense sets such that $L_{s^{\frown}\varepsilon} = \bigcup_{k \in \omega} D_{s^{\frown}\varepsilon}^k$. Since $(J_{s^{\frown}\varepsilon} \Delta L_{s^{\frown}\varepsilon}) \cap U_s = (J_{s^{\frown}\varepsilon} \cap U_s) \Delta (L_{s^{\frown}\varepsilon} \cap U_s)$ is not meagre, $J_{s^{\frown}\varepsilon} \cap U_s$ is a non-empty open set, which is, by inductive hypothesis, contained in cl $W \subseteq$ cl H_n . Hence also $J_{s^{\frown}\varepsilon} \cap U_s \cap H_n$ is a non-empty open set. Consequently there exists a non-empty open set $Z_{s^{\frown}\varepsilon}$ such that

$$Z_{s \frown \varepsilon} \subseteq J_{s \frown \varepsilon} \cap U_s \cap H_n \setminus \bigcup_{m < n, k < n} D_{s|m}^k.$$

Choose a non-empty open set $G_{s^{\frown}\varepsilon}$ according to the winning strategy of the Choquet game for the chain

$$Z_{s|1} \supseteq G_{s|1} \supseteq \cdots \supseteq Z_{s \frown \varepsilon} \supseteq G_{s \frown \varepsilon}$$

Since \mathcal{B} is a π -base, we can find a set $U_{s \frown \varepsilon} \in \mathcal{B}$ such that

$$U_{s \frown \varepsilon} \subseteq G_{s \frown \varepsilon} \subseteq Z_{s \frown \varepsilon} \subseteq U_s \subseteq \operatorname{cl} W_s$$

For any $F \in \mathcal{F}$, if $F \cap U_{s \cap \varepsilon} \setminus L_{s \cap \varepsilon} \neq \emptyset$, then $F \in \mathcal{A}_s^{\varepsilon}$. For a sequence $s \in 2^{\omega}$ define $K_s = \bigcap_{n \in \omega} U_{s|n}$. Since the sets G_s were chosen according to the Choquet game strategy, K_s is non-empty for each $s \in 2^{\omega}$. Since for any $s \in 2^{\omega}$ we have

$$K_s \cap \bigcup_{n \in \omega} L_{s|n} = \emptyset,$$

it follows that for any $F \in \mathcal{F}$, if $F \cap K_s \neq \emptyset \neq F \cap K_{s'}$, then s = s'. Consequently, the families $\{F \in \mathcal{F} : F \cap K_s \neq \emptyset\}$ are non-empty and disjoint for distinct $s \in 2^{\omega}$. Therefore

$$|\bigcup_{s\in 2^{\omega}} \{F \in \mathcal{F} \colon F \cap K_s \neq \emptyset\}| \ge 2^{\omega}.$$

Put

$$V := \bigcap_{n \in \omega} \bigcup_{s \in 2^{\omega}} U_{s|n}$$

Then $V \subseteq W$, $V \in \mathcal{B}^{\omega}$ and $|\{F \in \mathcal{F} \colon F \cap V \neq \emptyset\}| \ge 2^{\omega}$.

Theorem 1. Let X be a Hausdorff and Choquet space such that $\pi w(X) \leq 2^{\omega}$. Let \mathcal{F} be a partition of X into meagre sets. Then there exists a family $\mathcal{A} \subseteq \mathcal{F}$ such that $\bigcup \mathcal{A}$ does not have the Baire property.

Proof. Let \mathcal{B} be a π -base with $|\mathcal{B}| = \pi w(X)$ and let

$$\mathcal{B}^{\omega}_* = \{ V \in \mathcal{B}^{\omega} \colon |\{ F \in \mathcal{F} \colon F \cap V \neq \emptyset\}| \ge 2^{\omega} \}.$$

Then $|\mathcal{B}^{\omega}_{*}| \leq |\mathcal{B}^{\omega}| = \kappa \leq 2^{\omega}$. Take an enumeration $\mathcal{B}^{\omega}_{*} = \{V_{\alpha} : \alpha < \kappa\}$ and define transfinite sequences $(F^{0}_{\alpha})_{\alpha < \kappa}$ and $(F^{1}_{\alpha})_{\alpha < \kappa}$ such that $F^{\varepsilon}_{\alpha} \in \mathcal{F}$, $F^{\varepsilon}_{\alpha} \cap V_{\alpha} \neq \emptyset, F^{0}_{\alpha} \neq F^{1}_{\alpha}$, and $F^{\varepsilon}_{\alpha} \notin \bigcup_{\beta < \alpha} \{F^{0}_{\beta}, F^{1}_{\beta}\}$ for all $\alpha < \kappa$ and $\varepsilon \in \{0, 1\}$. Put

$$\mathcal{A}_0 = \bigcup_{\alpha < \kappa} \{F^0_\alpha\} \text{ and } \mathcal{A}_1 = \bigcup_{\alpha < \kappa} \{F^1_\alpha\}.$$

In search for contradiction suppose that $\bigcup \mathcal{A}$ has the Baire property for any $\mathcal{A} \subseteq \mathcal{F}$. Then

$$\bigcup_{\alpha < \kappa} F^0_\alpha = \bigcup \mathcal{A}_0 = G \cup M$$

for some G_{δ} set G and meagre set M.

Case 1. The set G is meagre. Then $\bigcup \mathcal{A}_0$ is meagre and there exists a dense G_{δ} subset $W \subseteq X \setminus \bigcup \mathcal{A}_0$. By Lemma 1 there is $\alpha < \kappa$ such that $V_{\alpha} \subseteq W$. Then

$$\emptyset \neq V_{\alpha} \cap F_{\alpha}^{0} \subseteq V_{\alpha} \cap \bigcup \mathcal{A}_{0} = \emptyset;$$

a contradiction.

Case 2. The set G is non-meagre. By Lemma 1, there is $\alpha < \kappa$ such that $V_{\alpha} \subseteq G \subseteq \bigcup \mathcal{A}_0$. Then

$$\emptyset \neq V_{\alpha} \cap F_{\alpha}^{1} \subseteq V_{\alpha} \cap \bigcup \mathcal{A}_{1} = \emptyset;$$

a contradiction.

References

A. Emeryk, R. Frankiewicz, W. Kulpa, *Remarks on Kuratowski's theorem on meager sets*, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 6, 493–498.