A note on Kuratowski's theorem on meagre sets.

March 19, 2024

This note was written based on a discussion among Wojciech Bielas, Andrzej Kucharski, Mateusz Kula and Szymon Plewik.

In [1] it was proven that if $\mathcal F$ is a partition into meager sets of Čech complete space X of weight $\leq 2^{\omega}$, then there exists a family $\mathcal{A} \subseteq \mathcal{F}$ such that $\bigcup \mathcal{A}$ does not have the Baire property. Following their proof, we provide a slight generalization, see Theorem 1. Instead of Čech completeness we assume that *X* is Hausdorff and Choquet space; we replace weight by π weight.

If $\mathcal B$ is a family of subsets of a space X, then

$$
\mathcal{B}^{\omega} := \left\{ \bigcap_{n \in \omega} \bigcup \mathcal{S}_n \colon \mathcal{S}_n \subseteq \mathcal{B} \text{ and } |\mathcal{S}_n| < \omega \text{ for all } n \in \omega \right\}.
$$

Lemma 1. *Assume that* X *is a Hausdorff and Choquet space,* B *is a* π -base $with |\mathcal{B}| \leqslant 2^{n+2^{\omega}}, \mathcal{F}$ *is a partition into meagre sets and* $W \subseteq X$ *is a* G_{δ} *subset that is not nowhere dense. If* $\bigcup \mathcal{A}$ *has the Baire property for all* $\mathcal{A} \subseteq \mathcal{F}$ *, then there exists* $V \subseteq W$, $V \in \mathcal{B}^{\omega}$ *such that* $|\{F \in \mathcal{F} : F \cap V \neq \emptyset\}| \geq 2^{\omega}$ *.*

Proof. Take open sets H_n such that $W = \bigcap_{n \in \omega} H_n$. For each finite sequence $s \in 2^{\lt \omega}$ we will define a set $U_s \in \mathcal{B}$ such that $U_s \subseteq \text{cl } W$ and a sequence $D_s = (D_s^k)_{k \in \omega}$ of nowhere dense sets. We proceed by induction. For $s = \emptyset$, since int cl $W \neq \emptyset$, we can pick a set $U_s \in \mathcal{B}$ such that $U_s \subseteq \text{cl } W$ and also put $D_s^k = \emptyset$ for all $k \in \omega$.

Fix $n \in \omega$ and assume that the sets U_s and sequences D_s are defined for all sequences *s* of length $\leq n$. Let *s* be a sequence of length *n*. We will define *U*^{*s*} \cap *ε* and *D*^{*s*} \cap *ε* for *ε* ∈ {0*,* 1}. The family

$$
\mathcal{I}_s = \{ \mathcal{A} \subseteq \mathcal{F} \colon \bigcup \mathcal{A} \cap U_s \text{ is meagre} \}
$$

is a sigma-ideal on $\mathcal F$ containing all singletons. $\mathcal I_s$ is not maximal, because otherwise there would exist a sigma-additive measure on $\mathcal F$ and κ -additive measure on some $\kappa \leq |\mathcal{F}|$, but

$$
\kappa \leqslant |\mathcal{F}| \leqslant |X| \leqslant 2^{2^{|\mathcal{B}|}} \leqslant 2^{1/2^{\omega}},
$$

which contradicts the fact that κ is strongly inaccessible. Hence there exist disjoint families \mathcal{A}_s^0 and \mathcal{A}_s^1 such that $\mathcal{A}_s^0 \cup \mathcal{A}_s^1 = \mathcal{F}$ and $\mathcal{A}_s^0, \mathcal{A}_s^1 \notin I_s$. Since \bigcup $\mathcal{A}_s^{\varepsilon}$ has the Baire property, there exist open sets $J_{s^{\frown}\varepsilon}$ and meagre sets $L_{s^{\frown}\varepsilon}$ such that

$$
\bigcup \mathcal{A}_s^\varepsilon = J_{s^\frown\varepsilon} \Delta L_{s^\frown\varepsilon}
$$

Take sequences $D_{s\supset\varepsilon}$ of nowhere dense sets such that $L_{s\supset\varepsilon} = \bigcup_{k\in\omega} D^k_{s\supset\varepsilon}$. Since $(J_{s\sim \varepsilon}\Delta L_{s\sim \varepsilon})\cap U_s=(J_{s\sim \varepsilon}\cap U_s)\Delta(L_{s\sim \varepsilon}\cap U_s)$ is not meagre, $J_{s\sim \varepsilon}\cap U_s$ is a non-empty open set, which is, by inductive hypothesis, contained in cl $W \subseteq$ cl H_n . Hence also $J_{s\hat{c}} \cap U_s \cap H_n$ is a non-empty open set. Consequently there exists a non-empty open set $Z_{s\sim\varepsilon}$ such that

$$
Z_{s^\frown \varepsilon} \subseteq J_{s^\frown \varepsilon} \cap U_s \cap H_n \setminus \bigcup_{m < n, k < n} D^k_{s|m}.
$$

Choose a non-empty open set $G_{s^{\frown}\varepsilon}$ according to the winning strategy of the Choquet game for the chain

$$
Z_{s|1} \supseteq G_{s|1} \supseteq \cdots \supseteq Z_{s^{\frown}\varepsilon} \supseteq G_{s^{\frown}\varepsilon}.
$$

Since B is a π -base, we can find a set $U_{s\uparrow \varepsilon} \in \mathcal{B}$ such that

$$
U_{s^{\frown}\varepsilon} \subseteq G_{s^{\frown}\varepsilon} \subseteq Z_{s^{\frown}\varepsilon} \subseteq U_s \subseteq \text{cl }W.
$$

For any $F \in \mathcal{F}$, if $F \cap U_{s \cap \varepsilon} \setminus L_{s \cap \varepsilon} \neq \emptyset$, then $F \in \mathcal{A}_{s}^{\varepsilon}$. For a sequence $s \in 2^{\omega}$ define $K_s = \bigcap_{n \in \omega} U_{s|n}$. Since the sets G_s were chosen according to the Choquet game strategy, K_s is non-empty for each $s \in 2^\omega$. Since for any $s \in 2^{\omega}$ we have

$$
K_s \cap \bigcup_{n \in \omega} L_{s|n} = \emptyset,
$$

it follows that for any $F \in \mathcal{F}$, if $F \cap K_s \neq \emptyset \neq F \cap K_{s'}$, then $s = s'$. Consequently, the families $\{F \in \mathcal{F} : F \cap K_s \neq \emptyset\}$ are non-empty and disjoint for distinct $s \in 2^{\omega}$. Therefore

$$
|\bigcup_{s\in 2^{\omega}}\{F\in \mathcal{F}\colon F\cap K_s\neq \emptyset\}|\geqslant 2^{\omega}.
$$

Put

$$
V := \bigcap_{n \in \omega} \bigcup_{s \in 2^{\omega}} U_{s|n}.
$$

Then $V \subseteq W$, $V \in \mathcal{B}^{\omega}$ and $|\{F \in \mathcal{F} : F \cap V \neq \emptyset\}| \geq 2^{\omega}$.

 \Box

Theorem 1. Let *X* be a Hausdorff and Choquet space such that $\pi w(X) \leq 2^{\omega}$. Let F be a partition of X into meagre sets. Then there exists a family $A \subseteq \mathcal{F}$ such that $\bigcup \mathcal{A}$ does not have the Baire property.

Proof. Let \mathcal{B} be a π -base with $|\mathcal{B}| = \pi w(X)$ and let

$$
\mathcal{B}_{*}^{\omega} = \{ V \in \mathcal{B}^{\omega} \colon |\{ F \in \mathcal{F} \colon F \cap V \neq \emptyset \}| \geqslant 2^{\omega} \}.
$$

Then $|\mathcal{B}_{*}^{\omega}| \leq |\mathcal{B}^{\omega}| = \kappa \leq 2^{\omega}$. Take an enumeration $\mathcal{B}_{*}^{\omega} = \{V_{\alpha} : \alpha < \kappa\}$ and define transfinite sequences $(F_\alpha^0)_{\alpha<\kappa}$ and $(F_\alpha^1)_{\alpha<\kappa}$ such that $F_\alpha^{\varepsilon} \in \mathcal{F}$, $F_{\alpha}^{\varepsilon} \cap V_{\alpha} \neq \emptyset$, $F_{\alpha}^{0} \neq F_{\alpha}^{1}$, and $F_{\alpha}^{\varepsilon} \notin \bigcup_{\beta < \alpha} \{F_{\beta}^{0}, F_{\beta}^{1}\}\$ for all $\alpha < \kappa$ and $\varepsilon \in \{0, 1\}$. Put

$$
\mathcal{A}_0 = \bigcup_{\alpha < \kappa} \{ F_{\alpha}^0 \} \text{ and } \mathcal{A}_1 = \bigcup_{\alpha < \kappa} \{ F_{\alpha}^1 \}.
$$

In search for contradiction suppose that $\bigcup \mathcal{A}$ has the Baire property for any $A \subseteq \mathcal{F}$. Then

$$
\bigcup_{\alpha < \kappa} F_{\alpha}^{0} = \bigcup \mathcal{A}_{0} = G \cup M
$$

for some G_{δ} set G and meagre set M .

Case 1. The set *G* is meagre. Then $\bigcup A_0$ is meagre and there exists a dense G_{δ} subset $W \subseteq X \setminus \bigcup \mathcal{A}_0$. By Lemma 1 there is $\alpha < \kappa$ such that $V_{\alpha} \subseteq W$. Then

$$
\emptyset \neq V_{\alpha} \cap F_{\alpha}^{0} \subseteq V_{\alpha} \cap \bigcup \mathcal{A}_{0} = \emptyset;
$$

a contradiction.

Case 2. The set *G* is non-meagre. By Lemma 1, there is $\alpha < \kappa$ such that $V_{\alpha} \subseteq G \subseteq \bigcup \mathcal{A}_0$. Then

$$
\emptyset \neq V_{\alpha} \cap F_{\alpha}^{1} \subseteq V_{\alpha} \cap \bigcup \mathcal{A}_{1} = \emptyset;
$$

a contradiction.

References

[1] A. Emeryk, R. Frankiewicz, W. Kulpa, *Remarks on Kuratowski's theorem on meager sets*, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 6, 493–498.

 \Box